Language
  • en
  • cs
header-mask header-mask

Fuel Cells with Low Platinum Content

The goal of the PaC-NG project is basic development of advanced thin-film nanocatalysts with low precious metal content and of their corrosion-resistant supports for stacks of hydrogen fuel cells with polymer membranes. At the same time, research on the specifics of application to large electrodes will be carried out as a preparation for future up-scaling of the technologies for stacks with active surfaces larger than 200 cm2 and powers of up to 5 kW, applicable in small and medium-sized stationary and mobile power sources.

 

 

european-union-msmt-logo-en.png (12 KB)

Acronym PaC-NG
Grant provider MŠMT/EU
Programme OP VVV
Call 02_16_025 Pre-Application Research in Priority Axis 1
Project ID CZ.02.1.01/0.0/0.0/16_025/0007414
Duration Apr 2018 – Dec 2022
Budget for Charles Univ. CZK 48,698,002
Principal investigator Prof. Vladimír Matolín
Project manager (Charles Univ.) Dr. Zdeňka Bubeníková
Partner organization University of Chemistry and Technology, Prague

Publications

  1. Kúš, P., Ostroverkh, A., Khalakhan, I., Fiala, R., Kosto, Y., Šmíd, B., Lobko, Y., Yakovlev, Y., Nováková, J., Matolínová, I., & Matolín, V. (2019). Magnetron sputtered thin-film vertically segmented Pt-Ir catalyst supported on TiC for anode side of proton exchange membrane unitized regenerative fuel cells. International Journal of Hydrogen Energy, 44(31), 16087–16098. https://doi.org/10.1016/j.ijhydene.2019.04.216
  2. Ostroverkh, A., Johánek, V., Dubau, M., Kúš, P., Khalakhan, I., Šmíd, B., Fiala, R., Václavu, M., Ostroverkh, Y., & Matolín, V. (2019). Optimization of ionomer-free ultra-low loading Pt catalyst for anode/cathode of PEMFC via magnetron sputtering. International Journal of Hydrogen Energy, 44(35), 19344–19356. https://doi.org/10.1016/j.ijhydene.2018.12.206
  3. Yakovlev, Y. v., Nováková, J., Kúš, P., Dinhová, T. N., Matolínová, I., & Matolín, V. (2019). Highly developed nanostructuring of polymer-electrolyte membrane supported catalysts for hydrogen fuel cell application. Journal of Power Sources, 439. https://doi.org/10.1016/j.jpowsour.2019.227084
  4. Lykhach, Y., Kubát, J., Neitzel, A., Tsud, N., Vorokhta, M., Skála, T., Dvorák, F., Kosto, Y., Prince, K. C., Matolín, V., Johánek, V., Myslivecek, J., & Libuda, J. (2019). Charge transfer and spillover phenomena in ceria-supported iridium catalysts: A model study. Journal of Chemical Physics, 151(20). https://doi.org/10.1063/1.5126031
  5. Bieloshapka, I., Jiricek, P., Yakovlev, Y., Hruska, K., Tomsik, E., Houdkova, J., Malolepszy, A., Mazurkiewicz, M., Lobko, Y., & Lesiak, B. (2020). Thermal and chemical activation methods applied to DFAFC anodes prepared by magnetron sputtering. International Journal of Hydrogen Energy, 45(27), 14133–14144. https://doi.org/10.1016/j.ijhydene.2020.03.116
  6. Duchon, T., Hackl, J., Mueller, D. N., Kullgren, J., Du, D., Senanayake, S. D., Mouls, C., Gottlob, D. M., Khan, M. I., Cramm, S., Veltruská, K., Matolín, V., Nemšák, S., & Schneider, C. M. (2020). Establishing structure-sensitivity of ceria reducibility: Real-Time observations of surface-hydrogen interactions. Journal of Materials Chemistry A, 8(11), 5501–5507. https://doi.org/10.1039/c9ta11784a
  7. Khalakhan, I., Bogar, M., Vorokhta, M., Kúš, P., Yakovlev, Y., Dopita, M., Sandbeck, D. J. S., Cherevko, S., Matolínová, I., & Amenitsch, H. (2020). Evolution of the PtNi Bimetallic Alloy Fuel Cell Catalyst under Simulated Operational Conditions. ACS Applied Materials and Interfaces, 12(15), 17602–17610. https://doi.org/10.1021/acsami.0c02083
  8. Khalakhan, I., Supik, L., Vorokhta, M., Yakovlev, Y., Dopita, M., Sandbeck, D. J. S., Cherevko, S., Veltruská, K., & Matolínová, I. (2020). Compositionally tuned magnetron co-sputtered PtxNi100-x alloy as a cathode catalyst for proton exchange membrane fuel cells. Applied Surface Science, 511. https://doi.org/10.1016/j.apsusc.2020.145486
  9. Khalakhan, I., Vega, L., Vorokhta, M., Skála, T., Viñes, F., Yakovlev, Y. v., Neyman, K. M., & Matolínová, I. (2020). Irreversible structural dynamics on the surface of bimetallic PtNi alloy catalyst under alternating oxidizing and reducing environments. Applied Catalysis B: Environmental, 264. https://doi.org/10.1016/j.apcatb.2019.118476
  10. Lykhach, Y., Skála, T., Neitzel, A., Tsud, N., Beranová, K., Prince, K. C., Matolín, V., & Libuda, J. (2020). Nanoscale architecture of ceria-based model catalysts: Pt-Co nanostructures on well-ordered CeO 2 (111) thin films. In Chinese Journal of Catalysis (Vol. 41). http://www.sciencedirect.com/science/journal/18722067
  11. Nováková, J., Dubau, M., Fuka, Duchon, T., Johánek, V., Fiala, R., Veltruská, K., Potin, V., Matolín, V., & Matolínová, I. (2020). Role of nitrogenated carbon in tuning Pt-CeOx based anode catalysts for higher performance of hydrogen-powered fuel cells. Applied Surface Science, 515. https://doi.org/10.1016/j.apsusc.2020.146054
  12. Ostroverkh, A., Dubau, M., Kúš, P., Haviar, S., Václavu, M., Šmíd, B., Fiala, R., Yakovlev, Y., Ostroverkh, Y., & Johánek, V. (2020). Durable ultra-low-platinum ionomer-free anode catalyst for hydrogen proton exchange membrane fuel cell. International Journal of Energy Research, 44(6), 4641–4651. https://doi.org/10.1002/er.5245
  13. Brown, R., Vorokhta, M., Skála, T., Khalakhan, I., Lindahl, N., Eriksson, B., Lagergren, C., Matolínová, I., Matolín, V., & Wickman, B. (2020). Surface Composition of a Highly Active Pt3Y Alloy Catalyst for Application in Low Temperature Fuel Cells. Fuel Cells, 20(4), 413–419. https://doi.org/10.1002/fuce.201900186
  14. Kot, M., Kegelmann, L., Köbler, H., Vorokhta, M., Escudero, C., Kúš, P., Šmíd, B., Tallarida, M., Albrecht, S., Abate, A., Matolínová, I., Schmeißer, D., & Flege, J. I. (2020). In situ Near-Ambient Pressure X-ray Photoelectron Spectroscopy Reveals the Influence of Photon Flux and Water on the Stability of Halide Perovskite. ChemSusChem, 13(21), 5722–5730. https://doi.org/10.1002/cssc.202001527
  15. Hrbek, T., Kúš, P., Yakovlev, Y., Nováková, J., Lobko, Y., Khalakhan, I., Matolín, V., & Matolínová, I. (2020). Sputter-etching treatment of proton-exchange membranes: Completely dry thin-film approach to low-loading catalyst-coated membranes for water electrolysis. International Journal of Hydrogen Energy, 45(41), 20776–20786. https://doi.org/10.1016/j.ijhydene.2020.05.245
  16. Brown, R., Vorokhta, M., Khalakhan, I., Dopita, M., Vonderach, T., Skála, T., Lindahl, N., Matolínová, I., Grönbeck, H., Neyman, K. M., Matolín, V., & Wickman, B. (2020). Unraveling the Surface Chemistry and Structure in Highly Active Sputtered Pt3Y Catalyst Films for the Oxygen Reduction Reaction. ACS Applied Materials and Interfaces, 12(4), 4454–4462. https://doi.org/10.1021/acsami.9b17817
  17. Bogar, M., Khalakhan, I., Gambitta, A., Yakovlev, Y., & Amenitsch, H. (2020). In situ electrochemical grazing incidence small angle X-ray scattering: From the design of an electrochemical cell to an exemplary study of fuel cell catalyst degradation. Journal of Power Sources, 477. https://doi.org/10.1016/j.jpowsour.2020.229030
  18. Brummel, O., Bertram, M., Prössl, C., Ronovský, M., Knöppel, J., Matvija, P., Fusek, L., Skála, T., Tsud, N., Kastenmeier, M., Matolín, V., Mayrhofer, K. J. J., Johánek, V., Myslivecek, J., Cherevko, S., Lykhach, Y., & Libuda, J. (2020). Cobalt oxide-supported pt electrocatalysts: Intimate correlation between particle size, electronic metal-support interaction and stability. Journal of Physical Chemistry Letters, 11(19), 8365–8371. https://doi.org/10.1021/acs.jpclett.0c02233
  19. Hrbek, T., Kúš, P., Košutová, T., Veltruská, K., Dinhová, T. N., Dopita, M., Matolín, V., & Matolínová, I. (2022). Sputtered Ir–Ru based catalysts for oxygen evolution reaction: Study of iridium effect on stability. International Journal of Hydrogen Energy, 47(49), 21033–21043. https://doi.org/10.1016/j.ijhydene.2022.04.224
  20. Darabut, A. M., Lobko, Y., Yakovlev, Y., Rodríguez, M. G., Veltruská, K., Šmíd, B., Kúš, P., Nováková, J., Dopita, M., Vorokhta, M., Kopecký, V., Procházka, M., Matolínová, I., & Matolín, V. (2022). Influence of thermal treatment on the structure and electrical conductivity of thermally expanded graphite. Advanced Powder Technology, 33(12). https://doi.org/10.1016/j.apt.2022.103884
  21. Pollastri, S., Bogar, M., Fiala, R., Amenitsch, H., Yakovlev, Y., Lavacchi, A., Aquilanti, G., & Matolin, V. (2022). Characterization of innovative Pt-ceria catalysts for PEMFC by means of ex-situ and operando X-Ray Absorption Spectroscopy. International Journal of Hydrogen Energy, 47(14), 8799–8810. https://doi.org/10.1016/j.ijhydene.2021.12.241
  22. Khalakhan, I., Vorokhta, M., Xie, X., Piliai, L., & Matolínová, I. (2021). On the interpretation of X-ray photoelectron spectra of Pt-Cu bimetallic alloys. Journal of Electron Spectroscopy and Related Phenomena, 246. https://doi.org/10.1016/j.elspec.2020.147027
  23. Yakovlev, Y. v., Rodríguez, M. G., Lobko, Y. v., Vorokhta, M., Kúš, P., Matolínová, I., & Matolín, V. (2022). Characterization of gas diffusion layer transport properties by limiting current approach. Electrochimica Acta, 404. https://doi.org/10.1016/j.electacta.2021.139755
  24. Yakovlev, Y. v., Lobko, Y. v., Vorokhta, M., Nováková, J., Mazur, M., Matolínová, I., & Matolín, V. (2021). Ionomer content effect on charge and gas transport in the cathode catalyst layer of proton-exchange membrane fuel cells. Journal of Power Sources, 490. https://doi.org/10.1016/j.jpowsour.2021.229531
  25. Ju, X., Šmíd, B., Johánek, V., Khalakhan, I., Yakovlev, Y., Matolínová, I., & Matolín, V. (2021). Investigation of dextran adsorption on polycrystalline cerium oxide surfaces. Applied Surface Science, 544. https://doi.org/10.1016/j.apsusc.2020.148890
  26. Bogar, M., Yakovlev, Y., Sandbeck, D. J. S., Cherevko, S., Matolínová, I., Amenitsch, H., & Khalakhan, I. (2021). Interplay among Dealloying, Ostwald Ripening, and Coalescence in PtXNi100-XBimetallic Alloys under Fuel-Cell-Related Conditions. ACS Catalysis, 11(18), 11360–11370. https://doi.org/10.1021/acscatal.1c01111
  27. Kobzar, Y., Fatyeyeva, K., Lobko, Y., Yakovlev, Y., Hrbek, T., & Marais, S. (2021). New ionic liquid-based polyoxadiazole electrolytes for hydrogen middle- and high-temperature fuel cells. Journal of Membrane Science, 640. https://doi.org/10.1016/j.memsci.2021.119774
  28. Xie, X., Khalakhan, I., Vorokhta, M., Yakovlev, Y., Dinhová, T. N., Nováková, J., Kúš, P., Dopita, M., Veltruská, K., & Matolínová, I. (2021). A Facile Way for Acquisition of a Nanoporous Pt–C Catalyst for Oxygen Reduction Reaction. Advanced Materials Interfaces, 8(12). https://doi.org/10.1002/admi.202100122
  29. Farnesi Camellone, M., Dvorák, F., Vorokhta, M., Tovt, A., Khalakhan, I., Johánek, V., Skála, T., Matolínová, I., Fabris, S., & Myslivecek, J. (2022). Adatom and Nanoparticle Dynamics on Single-Atom Catalyst Substrates. ACS Catalysis, 12(9), 4859–4871. https://doi.org/10.1021/acscatal.2c00291
  30. Yang, T., Kastenmeier, M., Ronovský, M., Fusek, L., Skála, T., Waidhas, F., Bertram, M., Tsud, N., Matvija, P., Prince, K. C., Matolín, V., Liu, Z., Johánek, V., Myslivecek, J., Lykhach, Y., Brummel, O., & Libuda, J. (2021). Selective electrooxidation of 2-propanol on Pt nanoparticles supported on Co3O4: An in-situ study on atomically defined model systems. Journal of Physics D: Applied Physics, 54(16). https://doi.org/10.1088/1361-6463/abd9ea