The full water electrolyzer cell allows a real-life simulation of the catalyst’s or cell components’ performance. The single cell consists of a single membrane electrode assembly. Compared to the half-cell, multiple additional effects complicate the actual electrochemical analysis, such as electrical connection, mass transport, membrane degradation, and poisoning by the catalyst. The next step is testing in the whole stacks, which consists of several membrane electrode assemblies and are a further step towards industrialization.
It is the best technique for the catalysts that seem to be promising after the half-cell screening and which are well electrochemically understood. It provides a final confirmation that the catalysts actually work and is an absolutely crucial step to take before any conclusions about the applicability of the catalyst in real electrolyzers.
We offer testing of user-provided proton exchange membrane (PEM) or anion exchange membrane (AEM) catalysts in the form of full membrane electrode assemblies (MEA) and catalyst-coated membranes (CCMs). Catalysts in powder form can also be brought and on-site mixed to ink and pressed to the membrane for in-cell measurements. Additionally, various cell components, such as novel AEM/PEM membranes or anode/cathode gas diffusion layers can be compared with commercial parts using referential catalysts.
Lectures, interesting facts and information in the field of nanomaterials and hydrogen technology.
© 2021 Matematicko-fyzikální fakulta Univerzity Karlovy.
Všechna práva vyhrazena. | Cookies